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Quasistatic elasticity measurements on rocks show them to be strikingly nonlinear and to
elastic hysteresis with end point memory. When the model for this quasistatic elasticity is ext
to the description of nonlinear dynamic elasticity the elastic elements responsible for the hys
dominate the behavior. Consequently, in a resonant bar, driven to nonlinearity, the frequenc
and the attenuation are predicted to be nonanalytic functions of the strain field. A resona
experiment yielding results in substantial qualitative and quantitative accord with these predi
is reported. [S0031-9007(99)08968-1]

PACS numbers: 62.40.+ i, 62.65.+k, 91.60.–x
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Rocks have extreme dynamic elasticity; their velocit
of sound changes by a factor of 2 under modest press
change [1,2] and unusual quasistatic elasticity; their qua
static stress-strain equation of state has hysteresis w
end point memory [3]. These properties make rock
interesting as members in the sequence of elastic syste
with increasing cohesiveness (sand, soil, rock, grain) a
interesting as members of the class of hysteretic syste
that possess memory [4].

Quasistatic stress-strain measurements on rocks
volve large strains (e ø 1023) and low frequencies
s f ø 1022 Hzd [5]. Dynamic nonlinear elasticity mea-
surements involve very small strains (e ø 1028) and
high frequenciess f ø 104 Hzd [1]. A mean field theory,
using a Preisach description of hysteretic elastic eleme
[6,7], gives a sensible picture of the observed quasista
behavior [8,9]. When this theory is extended to describ
dynamic elasticity a number of unusual predictions resu
[10,11]. The purpose of this paper is to report mea
surements of dynamic elasticity on a Berea sandsto
These measurements confirm the predictions of the the
and establish its usefulness in describing the quasista
and dynamic elasticity of consolidated materials ove
a large strain/ time scale range,1028 , e , 1023 and
1022 , f , 104 Hz.

Quasistatic stress-strain measurements on rock, e.g
Berea sandstone, show striking nonlinearity and hystere
with end point memory [5]. These observations hav
a theoretical explanation in terms of a new model fo
finding the equation of state of consolidated materia
[8,9,12]. The new model has been extended to descr
nonlinear elastic wave propagation [10] and the case
hand, resonant bar measurements [11,13]. A series
predictions results.

(i) The resonant frequency should have a frequency sh
that is linear in themagnitudeof the strain field,U, i.e.,

Df
f0

­ Cf jUj . (1)
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(ii) 1yQ, a measure of the attenuation, should d
part from 1yQ0 linearly in the magnitude of the strain
field, i.e.,

1yQ 2 1yQ0 ­ CQjUj , (2)

with CQyCf ­ 3py8 ø 1 and Cf ­ a. (The constant
a, which characterizes the hysteretic elastic elements
the rock, is found from the analysis of quasistatic da
a ø 103 for a Berea sandstone [14].)

The sample was a long, thin, cylindrical rod of Bere
sandstone,6 cm 3 30 cm, that had a low amplitude
resonance atf0 ø 2880 Hz with a Q, denotedQ0, of
approximately 170. It was mounted in a sample chamb
evacuated toø20 mTorr, and temperature controlled to
0.1±C at approximately room temperature. (The da
reported below were taken after the sample had been un
vacuum and temperature control for about 3 months.)
PZT-4 piezoelectric disk, having brass inertial backloa
was epoxied to one end of the cylinder and acted
the source. It was driven in discrete frequency ste
from an HP3325B function generator through a Crow
Reference I audio amplifier. The acceleration of th
opposite end of the bar was detected with a B&K 830
accelerometeryB&K 2635 charge amplifier. A reference
signal from the function generator and the detect
signal were fed to a E&G 5302 lock-in amplifier. Th
system was capable of measuring accelerations do
to 1022 cmysec2 or strains of order10210. A digital
oscilloscope was used to monitor time series and
spectral content. Sweep rates, frequency steps, volt
steps, and data storage are all controlled by an Ap
PowerPC runningLABVIEW . (Linearity of the electron-
ics, transducer bond, and the complete measurem
system were carefully checked by methods described
previous literature [2].)

An up/down frequency sweep is conducted at fixe
source voltage, e.g.,V1. It consists of a sweep up through
the frequency sequencef1, . . . , fN followed by a sweep
© 1999 The American Physical Society
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down through the same frequencies in reverse order. T
source voltage is then stepped toV2 and an up/down fre-
quency sweep is conducted. In a run up/down frequen
sweeps are carried out atM approximately evenly spaced
voltages fromV1 to VM followed by up/down frequency
sweeps as the voltage sequence is traversed in revers
der. A run is judged to be of good quality when ther
is good agreement between the up and down freque
sweeps at both visits to all voltages. At each points fi , Vjd
in a run, both the in phase and out of phase component
the detected acceleration are recorded. The in phase
out of phase acceleration components are converted to
placements and denotedAij andBij , respectively. From
them we constructUij ­

p
A2

ij 1 B2
ij. We take the three

N 3 M matricesU, A, andB as the data set for a particu
lar run. The average strain field in the bar is proportion
to the displacement. Thus we work with the displaceme
matrices and regard them as equivalent to the correspo
ing strain matrices and refer toU, A, andB as the strain.

A frequency sweep, at fixed voltage, through th
resonance of the bar leads to changes in the amplitude
the detected signal that are typical of a simple oscillat
Accompanying these changes in amplitude are change
the strain field in the bar. If the elastic properties of th
bar depend upon the strain field within it, the resonati
system is changing as the sweep proceeds. Peak bend
typical of nonlinear oscillators [2,15], is a manifestatio
of such internal changes in a resonating system.

FIG. 1. Strain amplitude as a function of frequency an
voltage. The strain is measured at 121 frequencies fr
2850 Hz in steps of0.5 Hz; the step number is indicated on
the x axis. The strain amplitude is in arbitrary units with
the maximum strain shown corresponding to approximate
3 3 1027. Each curve is the data taken at one of twelv
constant source voltages. The horizontal line at40 corresponds
to a constant strain cut of the data.
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We want to use the response of the rock, brought ab
by the internal strain field, to study the nonlinear elast
properties of the rock. This is done most cleanly b
analysing the experimental data at constant strain. T
first step in our data analysis is to contour the strain mat
at constantU, i.e., find trajectories of constantU through
Uij. Along each constantU trajectory throughs f, V d
we also findA and B. To extract information about the
elastic properties of the rock along constantU contours
we proceed as follows.

(i) At constant strain the rock responds as a simp
damped harmonic oscillator [11] for which

U ­ l
V

sX 1 iY d
­ A 1 iB , (3)

where the oscillator, having natural frequencyf0 and
damping Q, is driven at frequencyf by a source of
voltage strengthV . Here, X ­ f2 2 f2

0 , Y ­ ff0yQ,
and l is the calibration constant that relates the stra
to the source voltage. The natural frequencyf0 and Q
are constant on a constantU contour but may vary from
contour to contour.

(ii) We use Eq. (3) to form ratios ofU, A, andB that
isolate the parametersf0 and 1yQ that characterize the
response

LU ; sl2V 2yjUj2d ­ X2 1 Y2, (4)

LA ; slV 2yjUj2d
A
V

­ X , (5)

LB ; slV 2yjUj2d
B
V

­ Y . (6)

The quantities on the left-hand sides of these equatio
are constructed along constant strain trajectories from
experimentalU, A, andB matrices. An example is shown
in Fig. 2. We emphasize that the data presentation in t
figure results simply from manipulating the data in th
fashion suggested by the form on the left-hand sides
Eqs. (2)–(4).

(iii) The right-hand sides of Eqs. (2)–(4) furthe
suggest thatLU , LA, and LB should be simple polyno-
mials in f. Thus along each constantU contour we
fit LU to PU ­ u0 1 u2f2 1 u4f4, LA to PA ­ a0 1

a2f2, and LB to PB ­ b0 1 b1f. The coefficients
fu0, u2, u4, a0, a2, b0, b1g, contant on a constantU contour,
vary from contour to contour. It is this variation that tell
us about the strain response of the rock, the nonlinea
of the rock.

(iv) From the frequency at whichPA passes through
zero and the frequency at whichPU is a minimum, we get
two measures of the resonant frequency,f0, at each strain.
Similarly from b0 and the value ofPU at its minimum we
get two measures of the damping,1yQ, at each strain.

The results of analysis of the experimental data a
cording to this scheme are shown in Fig. 3. In Fig. 3
3281
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FIG. 2. Behavior along contours of constant strain. Th
quantitiesLU (a), LA (b), andLB (c) along contours of constant
strain, U, show the frequency dependence of the amplitud
of the in phase component and out of phase component
the strain, Eqs. (4)–(6). The strain dependence of the reson
frequency and of1yQ is found from fitting simple polynomials
in f to these curves. The three curves shown here are for
contour atU ­ 40 in Fig. 1.

we show the resonant frequency as a function of stra
for three runs that cover overlapping low strain regime
(1028 # e # 3 3 1027, 2850 # f # 2910 Hz). The
results from each run are shifted from one another
the curve. There is a pair of symbols associated w
the data for each run, one of these shows the reson
frequency from the zero ofPA and the other shows the
resonant frequency from the minimum ofPU . The near
overlap of the two determinations off0 is a further check
on consistency of the data analysis. [The shift of th
three curves (taken several weeks apart) is a conseque
of slowly varying shifts in the state of the rock due
to temperature and saturation. The very elaborate r
acceptance criterion described above was intended a
check that during a run (typically an hour) such shif
were not significant.] The frequency shift corresponds
a softening nonlinearity with

f0s0d 2 f0sUd ø Cf jUj , (7)

Cf ­ 8 6 2 3 1026. In Fig. 3b we show1yQ as a
function of strain for the same three runs as in Fig. 3
Again there is a pair of symbols for each run (an open a
3282
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FIG. 3. (a) The resonant frequency as a function of the stra
From the study of the behavior ofLA and LU at fixed strain
there are two determinations of the resonant frequency at t
strain. For each of three runs that cover overlapping low stra
regimes, 0.095 # V # 1.97, 0.47 # V # 3.74, 2.34 # V #
7.47 (1028 # e # 5 3 1027), 2850 # f # 2910 Hz, there is
a pair of symbols corresponding to these determinations. T
spread from run to run is a slow drift that we are unable
eliminate. (See the discussion of the procedure for acceptin
run in the text.) The value ofCf is from the slope of the run
with the largest source voltage (shown with open and clos
squares). (b)1yQ as a function of strain. From the study o
the behavior ofLB andLU there are two determinations of1yQ.
For each of three runs there is a pair of symbols correspond
to these determinations. The value ofCQ is from the data
shown with open and closed squares.

closed symbol of the same shape) that show consisten
The behavior of1yQ is far noisier than the behavior of
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the frequency shift but1yQ seems not to be subject to
the uncontrolled slow drift seen inf0. From these data
we find

1
QsUd

2
1

Q0
ø CQjUj , (8)

CQ ­ 2 6 1 3 1026. The frequency shift and1yQ are
proportional to the magnitude of the strain field with
CQyCf ø 0.25. It remains to compare the magnitude
of Cf and CQ to the predictions from the analysis of
quasistatic data. The strain scale we have used u
now, e.g., in Figs. 1–3, has been in arbitrary unit
Using the measured accelerations and the length of
resonant bar, we find that the maximum strain explore
is e ø 3 3 1027. Thus the observed frequency shift is
sDfyf0dX ø 2.7 3 103e.

In the theory of the response of the resonant b
[11], the frequency shift is given byDfyf0 ø ge,
g ­ K0ayA0, where K0 is the compressibility, anda
and A0 are coefficients determined from the quasistat
data;A0 and a measure the nonhysteretic and hysteret
components of the elastic response, respectively. R
cently Guyer et al. [14] have analyzed an extensive
quasistatic data set on a Berea sandstone with the re
K0 ø 10 GPa, A0 ø 1024 GPa21, a ø 1022 GPa22.
This leads to √

Df
f0

!
T

ø 1000e . (9)

The order of magnitude agreement betweensDfyf0dX and
sDfyf0dT is gratifying.

We take the package of results, the linear dependen
of Dfyf and 1yQ on jUj, the quantitative relationship
of Cf to CQ , and the quantitative relationship ofCf

to quasistatic parameters as strong evidence that
picture of dynamic nonlinear elasticity we are testing ha
substantial validity. The alternative, the traditional theor
of nonlinear elasticity [16], leads to a frequency shift tha
is quadratic in the strain field withDfyf0 ø 10210 at e ø
3 3 1027, i.e., to results having neither a qualitative no
a quantitative relationship to the experimental finding
The picture of nonlinear elasticity dominated by a
assemblage of hysteretic elastic elements provides
synthesis of quasistatic and dynamic elastic behavior ov
a substantial strain/frequency range. Quite possibly th
picture can be usefully employed in understanding som
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of the properties of sand, soil, concrete, ceramics, etc
systems that in are in some circumstances similar to rock
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